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Under the hypothesis of a fundamental length lo, the Bopp equation is 
considered as a basic equation of motion instead of the Klein-Gordon 
equation. Assuming that the mass is a function of lo, we derive a mass 
relation m > (h/2loc). The propagators obtained in the framework of the 
present theory have the same types as those with a simple cutoff. However, 
because of the mass relation, the tildon field with indefinite metric is 
always confined in the virtual state and never appears in real processes 
as a physical entity. Thus, our new version leads to a finite theory of 
quantum electrodynamics. 

1. INTRODUCTION 

Quantum electrodynamics (QED) is one of  the most beautiful theories 
that we have ever had. There is no outstanding discrepancy between theory 
and experiment despite our pursuing the limits of the theory to higher 
accuracy and smaller distances (Hofstadter, 1975; Rich and Wesley, 1972) 
than was possible some time ago. However, the occurrence of divergences 
which can temporarily be avoided only by renormalization is considered to 
be an essential defect of  the present scheme for quantum electrodynamics. 
The renormalization procedure seems to be tricky for the case of  infinite 
theory which has divergences, although it is unquestionable for the finite 
theory. I f  the mass difference between a proton and a neutron were due to 
the electromagnetic interaction, it might be very difficult to explain this mass 
difference with the renormalized theory, because the self-energy of  the 
particle which is infinite and has to be renormalized is the quantity not to be 
calculated in the framework of  the theory. 

It is mentioned (Heisenberg, 1938; March, 1936a, b; March, 1937a, b, c) 
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that any future theory of elementary particles must contain a universal 
length besides two fundamental constants, e and h. The introduction of such 
a fundamental length would eliminate the divergence difficulties from 
relativistic quantum field theory by cutting off the high-energy part of the 
proper field in the same way that the high-energy black-body radiations, 
which give rise to the Rayleigh-Jeans (Rayleigh, 1900; Jeans, 1905) di- 
vergence, are cut off by means of the constant h in Planck's quantum theory 
(Planck, 1900). 

In this situation a series of discussions were given by several people 
on the generalized equation for propagation of the electromagnetic field 
(Bopp, 1940; Podolsky, 1942; Podolsky and Kikuchi, 1944; Montgomery, 
1947; Green, 1947). Since this generalized equation (referred to as the Bopp 
equation hereafter) containing a constant which has a dimension of length 
gives a propagator that is superposition of a photon and a tildon, there is a 
possibility for removing divergences from the theory. However, as the tildon 
field obeys an indefinite metric, we have a positive or negative probability 
for even or odd numbers of tildons. Such a concept is physically unacceptable 
(Matthews, 1949). If  the tildon field could be confined in virtual states, the 
difficulties associated with an indefinite metric would not take place. 

In this paper, by assuming that the particle mass is a function of the 
fundamental length 10, we shall derive a condition for confinement of the 
tildon field to virtual states. 

2. HYPOTHESIS OF THE FUNDAMENTAL LENGTH AND A 
MASS RELATION 

2.1. Speculation on the Fundamental Length. It can be said through 
quantum electrodynamics (QED) that all arguments given in the special 
theory of relativity are surely correct in the microscopic world up to the 
order of 10 -15 cm, because no outstanding discrepancy between theory and 
experiment has ever been found. However, that does not mean to rule out 
the possibility that a principal modification might be required for the space- 
time concept in the microscale smaller than 10 -15 cm (Pauli, 1933). 

Here we must remind ourselves how to measure the distance or position 
in the microscopic world of the order of 10 -15 cm or smaller. In such a 
small region one must do it through the interaction associated with the 
elementary particle. Let us put a test body in the field whose quantity we 
intend to measure. It is clear that we cannot measure by a test body the aver- 
age of a field quantity in a volume Vunless the test body itself can be localized 
in the volume. However, the particle with a mass m cannot be localized at a 
point because the particle position is uncertain by Ax > (h/me). Further- 
more, as is discussed in the Appendix, a particle in the field cannot be localized 
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in the sphere whose radius is less than ( 2 F ) l : 2 ( h / m c ) ,  where F is the coupling 
constant associated with the field. 

It follows from the foregoing that the local theory presupposes implicitly 
the existence of  arbitrarily heavy elementary particles (m--> ~) .  In order 
to avoid the appearance of divergences in the theory, it seems that we should 
introduce an upper limit on the mass of  the elementary particle. The im- 
position of  a certain upper bound on the particle mass mx would mean, in 
principle, to set a limitation upon the use of  the concept of arbitrarily exact 
coordinates of  the point in the space and upon the applicability of  local 
theory for scales of  the order of  Ax ~ ( h / m x c ) .  

Keeping this argument in mind, we shall derive an important mass 
relation from a basic equation of motion which contains a fundamental 
length. 

2.2. Derivation of the Mass Relation. Let us recall Mach's principle, 
"the inertial mass of a body is determined by the total distribution of  matter 
in the universe." This means that the inertial mass of the particle depends on 
the structure of  the space-time. The structure of the space-time might be 
determined by the matter distribution. From these arguments, it is rather 
natural to consider that the particle mass has a mutual relation with the 
structure of  the space-time. 

In the theory of  special relativity, the Lagrangian for a particle is 
generally expressed as 

= -moe2~/(1 - /32) 1/~ (2.1) 

where mo is the particle mass and fl = v ie  with the particle velocity v and 
the speed of  light c. 

Assuming that the particle mass is a function of  a universal constant 
lo, we replace mo in equation (2.1) by rh(lo) 

,L# = - rh(lo)e2 v ' ( 1  - ~2)v2 (2.2) 

where we have a condition, 

rh(lo) --> mo for lo -+ 0 (2.3) 

Of course, mo and rh(10) are real. With this Lagrangian, the momentum and 
energy of  a particle are easily obtained as 

~ r~vj 
P '  = evj - (1 - /32) 1/2 ( j  = 1, 2, 3) 

fire z 
E = p. v - ~qo _ (1 -- t32) 1/2 (2.4) 
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where the argument 10 in the expression rh(10) was dropped for simplicity. 
Thus, the dispersion law yields 

p~,p~, =_ po 2 _ p2 = rh2c 2 (2.5) 

where Po = E/c. Our metric is goo = - g l l  = -g~2 = -g33 = 1 and the 
representation aub ~ is the summation over all components, i.e., a , b " =  
~ gu~a~b~. Since r~ is a function of  the universal constant lo alone, the 
dispersion law (2.5) is invariant under the Lorentz transformation. The 
explicit expression of  the lowest-order dispersion law containing lo is 

l~ ~ ~ (2.6) ( l - ~ ' r  =mo2c z 

which is a Lorentz-invariant form as well (Bopp, 1940; Podolsky, 1942; 
Podolsky and Kikuchi, 1944; Montgomery, 1947; Green, 1947; Pais and 
Uhlenbeck, 1950). For the limit 10 ~ 0, the equation (2.6) reduces to the 
usual dispersion law, which is also obtained from equation (2.5) with the 
condition (2.3). Appearance of  the Planck constant h in (2.6) is for the sake 
of  dimension and is equivalent to introduction of  quantum mechanical 
characters into it. Substitution of  (2.5) into (2.6) gives a quadratic equation 
of  rh 2, 

( h )  (h '~  2no 2 rh 4 -  / ~  2rh2 + - - 0  (2.7) 
\loCI 

There are two solutions of this equation, 

m~ z = ~ 

(see Figure 1). Since the mass is real, we should have a condition in equation 
(2.8) 

1 - (2lomoc/h) 2 >1 0 

Thus we obtain a very important mass relation 

m~ / ~  

which means that the physical mass cannot be larger than (h/2loc). In the 
limit 1o --~ 0, the usual concept, i.e., 0 ~< rno ~< oo, is restored just as the special 
theory of relativity and quantum theory reduce to the classical one in the 
limit c--~ c~ and h - +  0, respectively. Notice that only the solution rh_ 2 in 
(2.8) satisfies the condition (2.3). When lo << (h/moc), we have 

rh_ 2 = mo2[1 + (lomoc/h) a + . . . ]  (2.10) 

Therefore, dz_ 2 ~ m02 for lo --+ 0. On the other hand, m+ 2 is an unphysical 
solution by which our initial condition (2.3) is not satisfied. 
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Fig. 1. The graph  o f  [r~ 4 - (h/loc)2th 2 + 
(h/loc)2mo 2] = 0. The physical  region is 
shaded  by lines. 
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When mo > (h/2loc), rh.  becomes complex, and accordingly, for this 
case, the particle is extremely unstable because the imaginary part becomes 
very large. This can easily be seen as follows: rh ~ 2 = �89 +_ i�89 (h/loc)2a 112 
(where a = 2moloc/h > 1) and Im rh~ must be very large since lo is expected 
to be very small. A large value of Im the yields a short lifetime. Since 
[Im rh• [ is an order of (h/loc), the lifetime of the particle is, then, an order 
of r ~ h/[(h/loc)c 2] = lo/c by the Heisenberg's uncertainty principle. There- 
fore, such a particle with an extremely short life cannot be observed, because 
our minimum observable length is lo. 

Let us interpret the mass relation (2.9) to be generally satisfied by all 
physical masses of the elementary particles. Then, one finds that rh_ is 
physical as well as unphysical because r~_ ~< (h/21/2loc), while ff~+ is always 
unphysical because rh+ /> (h/21/2loc) > (h/2loc). Although the physical par- 
ticle playing a role in real processes is allowed to have only a physical mass 
rh_, the unphysical mass rh+ would possibly appear only in virtual processes 
because of the mass relation. This restriction on the mass might rescue the 
concept of indefinite metric (Pauli, 1943; Matthews, 1949; Gupta, 1950; 
Feynman, 1949) from its difficult situation, such as negative probability (a 
brief explanation will be given in Section 3.4), and hopefully remove all 
divergences in quantum electrodynamics. 
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3. EQUATION OF MOTION 

In this section, we shall discuss the basic equations of motion corre- 
sponding to the Klein-Gordon equation and the Dirac equation. 

3.1. Bopp Equation. In our version, the lowest-order dispersion law 
containing 1o is given in (2.6), and it can also be expressed as 

to ~. 
- h - x  (p~ - ~+~c~)(p  2 - ~ _ ~ c  ~) = 0 ( 3 . 1 )  

where p2 = P~'Pu = PuP~'. By replacing the momentum in (2.6) or (3.1) by 
the differential operators in the usual way, 

p ,  ~ ih Ox----- ~ 

OX u 

o { o }  
Ox. ~(ct) '  - v 

we find the Bopp equation 

9 2 

In the limit of lo ~ 0, this equation reduces to the usual Klein-Gordon 
equation. 

This type of equation was already discussed by several people (Bopp, 
1940; Podolsky, 1942; Podolsky and Kikuchi, 1944; Montgomery, 1947; 
Green, 1947; Pais and Uhlenbeck, 1950) for the case of mo = 0. However, 
their works have never fully been accepted because the additional meson 
field has the indefinite metric, which is not consistent with our usual concept 
of probability (Matthews, 1949). In our case, the additional field obeying 
the indefinite metric is confined in the virtual state by the mass relation (2.9). 

For the case of the massless particle, i.e., m0 = 0, the Bopp equation 
takes the form 

(1 + Io 2 8" 0,) Oa 0a~ = 0 (3.4) 

where 0 n = O/Ox ~'. It is to be stressed that because of the constancy of the 
speed of light, the motion of the massless particle in a free space (no inter- 
action) is described by the usual Klein-Gordon equation 

~ ~ = 0 (3.5) 
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which is also the solution of equation (3.4). The solution of equation (3.4) 
is given as 

1 
f [~b(k) exp (ikux 0 + ~b*(k) exp (-ik,,x*')] r  = d4k 

l j. 
+ ~ [r exp (iF.x") + r exp ( -  ik.x")l d~J2 (3.6) 

where 

ko = ]k], k = k, and ko = (1 + lo2ko2)1/2/lo = (k 2 + 1//o2) 1;2 

The second term in (3.6) is not a physical field but only a reflection of the 
discrete space-time associated with the universal length 10. Let us refer to 
this unphysical field as a "tildon field" (Matthews, 1949). And, then, ~b(x) 
is the superposition of a photon and a tildon with a mass (h/loc). This tildon 
field makes a negative contribution to the total energy and induces negative 
probability because it belongs to the indefinite metric. However, because of 
the mass relation (2.9), this field cannot appear in real processes as a physical 
entity except only in virtual processes. Therefore, for the motion of the 
free photon, only the free electromagnetic field can appear. Since our basic 
equation of motion is given by (2.1), a tildon appears together with a particle 
in the virtual state while only the particle exists in the real state. Therefore, 
we have the following relation: 

(number of the particle) /> (number of the tildon) 

3.2. Static Solution. In order to see the effects of the/0-dependent term 
in equation (3.4), let us consider the static case for m o =  0, 

( ~2 ) ~2 
1 - l o  2 ~  ~ = 0  ( i , j= 1,2,3) (3.7) 

The solution of this equation is 

r = - ( , / r ) (1  - e-r/'o) (3.8) 

where E is an arbitrary constant and r = (x~ 2 + x22 + x32) I/2. When l0 -+ 0, 
the solution (3.8) reduces to the usual static potential for the electric field. 
As is shown in Figure 2, our solution is finite at the origin, while the usual 
static potential is infinite there. Since the difference between the two cases is 
significant in the short-range region, our theory might be tested at very high 
energy. 

With the static potential (3.8), we are able to calculate the total energy 
of the electric field. The expression of the total energy is 

l f o ~  g = -~ E(r)247rr 2 dr (3.9) 
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Fig. 2. The static Coulomb potential. 

where the electric field is given by 

E ( r ) =  a~(r) (3.10) 
ar 

For the usual case, i.e., ~ = - e / r  (where e is the electric charge), the total 
energy U becomes infinite. When the charge of  an electron is assumed to 
uniformly distribute over a sphere of  radius ro in order to avoid such 
divergent results, we obtain 

1 E(r)24~rr 2 dr = e2 U = g o 2r---'~ (3.11) 

Under the hypothesis that the electron mass is of electromagnetic origin, 
the classical electron radius is obtained by putting the total energy (3.11) 
equal to the electron rest mass energy, 

e 2 
ro = 2cmec2 ~- 1.4 x 10 -la cm (3.12) 

Introduction of  a lower limit to the integral (3.11) generally makes the 
theory nonlocal and the interaction of  fields becomes tremendously com- 
plicated. However, in our present theory, a free electron behaves as a point- 
like particle and its nonlocal character in the virtual state is described by 
the additional tildon field. With the potential (3.8), we obtain the total 
energy of  the electric field 

e ~ f f [  O1 ]2 e 2 U = g-g~ - ~ r r ( 1  - e-~J~o) 4~r2 dr = --4lo (3.13) 

3.3. A New Version of the Dirae Equation. In the same way as the 
Dirac equation was derived, one can also extract a modified Dirac equation 
from the Bopp equation. Since the Bopp equation is a fourth-order differential 
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equation, the modified Dirac equation will be quadratic. The resultant 
equation is 

/o (#  + r e + c ) ( # -  re_c)4, = 0 (3A4) 

which reduces to the usual Dirac equation ( / r -  moc)4~ = 0 for Io-+ 0. In 
the coordinate space, it is given as 

Here, we used a usual notation, ~ = ~..p", with the Dirac ~. matrices which 
have the following properties, 

~'u~'~ + YWu = 2g~,~1 (3.16) 

~,o2 = _ ~ j 2 =  1 ( j =  1,2,3) 

When the conjugate operators are operated from the left of the modified 
Dirac equation (3.15), we can easily obtain the Bopp equation as follows: 

o-- ,,(-i.+ (+/,+-s) ) 
[ " = lo 2 ~ ,  ~ '  + i (rh+ - m _ ) c i ~  + 

h h 2 J 

_ _ i x ~ v _  i(m+ h ~ + h 2 ] 

= [t02(e. eg(e~ e0 + (t0c/h)2(m+ 2 + m_2) e~ e. + t0(c/h),~+2m_2]r 

= [(1 +/02 ~. ~9 ~ e~ + (moc /h )~]4  ' 

Here, we used the facts that . / ~ =  a,O u, r~+2+ rh_2= (h/ loc)  2 and 
r ~  + 2 r~  _ ~ = (moh / toC)  2. 

The solution of equation (3.15) is the superposition of a Dirac (spinor) 
field and a Dirac (spinor)-tildon field. In a free space, only the Dirac (spinor) 
field can appear as a physical entity and the Dirac (spinor)-tildon field, 
which can appear only in the virtual processes, is suppressed by the con- 
dition (2.9). Thus, the motion of the Dirac particle in a free space is described 
by the equation 

( ~ -  ~ _ c ) ~  = 0 

whose solution satisfies the modified equation (3.14) as well. 

3.4. Propagators. Since the equations of motion for a photon and a 
Dirac particle are given by (3.4) and (3.15), it is easy to obtain the propagators 
for these particles. 
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Let us, for example, consider the equation of  motion for a photon: 

(1 + lo 2 ~' G) ~ O#(x) = -p (x )  (3.17) 

where p(x) is a source of  the field. The Fourier expansions of  ~b(x) and p(x) 
a r e  

1 f A(k)e t~  dak r = ( f ; f  

' f  p(x) - (2,0 ~ p(~)e '~x d~k (3.18) 

Substituting (3.18) into (3.17), we obtain 

( 1  - 102~:2)~:~.a(k) = p(k) (3.19) 

From (3.18) and (3.19), the solution ~(x) is expressed by p(x) as 

1 f p(k) e~kX d4k 
~b(x) = (2rr), (1 - lo2k2)k z (3.20) 

Thus, the propagator of photon yields 

1 1 1 
= (3.21) 

(1 - lo2k2)k 2 k 9 k 2 - (1/1o) 2 

where the second term in the right-hand side is the propagator of the 
photon-tildon. The propagator obtained here has exactly the same form as 
that given by Feynman (1949), except that in his case A = 1/Io --~ co after 
calculation of  the physical quantities. Now we define the quantities ~b(k) 
and 4(k) as 

where 

ko = Ikl, k = k ,  

Since ko d4k = Eo d~E, 

1 
r = (-GT~)* 

1 
= ~  

_ 1 

(2~) ~ 

k2~(k) = p(k) 
~ 2 4 ( ~ )  = ~(~) 

m 

ko 2 = k 2 + 1/lo 2, and 

(3.22) 

p(k) e,~, ~!E) e,~, ~ 
= R ,  ~ 

the solution (3.20) can be rewritten as 

f [k-2 k2 _ ~1/1o)2] p(k)e~x d4k 

f p(k) e,~Xd, k 1 ( #(Z) ko e,~X 
k 2 + f f ~  3 --~-Go d'k 

1 
_ _ _  f •( k)e'kx d4k + ~ f cfi(k')e'kX d4Fc (3.23) 
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Here, the first term on the right-hand side corresponds to a photon while 
the second term expresses a photon-tildon field. This is exactly the same 
result as that obtained in (3.6). Similarly, the propagator for the Dirac 
particle is given by 

1 _ ( h / l o c ) [ 1  1 1 (3.24) 
(/o/h)(~ + r~+c)(~r- r~_c) (r~+ + .h_) s ' -  r~_c z + ~ + c  

where the second term on the right-hand side is also the propagator of the 
tildon. 

4. INDEFINITE METRIC AND S MATRIX 

In this section we shall give a brief explanation of the indefinite metric 
which our basic equation of motion contains and a discussion on unitarity 
of the S matrix. 

It is generally said that if the interaction is Hermitian the S matrix 
satisfies the unitary condition and the propagator has a positive sign and 
obeys a positive definite metric. While if the interaction is anti-Hermitian, 
unitarity of the S matrix breaks down and the propagator has a negative 
sign and obeys a negative metric. 

Introducing an indefinite metric induces a pseudounitary condition for 
the S matrix, which seems to be necessary and sufficient as a condition 
imposed on the S matrix, when the physical quantities such as expectation 
values and norms are redefined. The only problem is how to handle the 
appearance of a negative probability. Our present theory may be successful 
in dealing with these problems. 

4.1. Indefinite Metric and Norm. As was seen in the previous section, 
the state is generally given by the superposition of the particle state Ir 
and the tildon state ]r i.e., 

I1r = Ir + Ir 

and ]r and ]r are neither coupled nor overlapped. If  the interaction H 
is not Hermitian but pseudo-Hermitian, i.e., 

nH+n = H, n 2 = 1, n + = ~7 (4.1) 

the wave function is normalized as 

<r162 -- NR,8. 

((r162 = AR,~,; 

(r162 = (NR, + AR3~. = R,8 .  (4.2) 
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where NR~2 = aR~2 = R~ 2 = 1 and then the expectation value of  a quantity 
A is given by 

A,~ = ~ (ff, l[~/A I[~J) (4.3) 

It seems to be convenient to take NR~ = 1 and aR~ = ( -1 )L  Here, it 
should not be taken that R~ = NR~ + aR~ = 1 + ( - I )  ~ = 2 or 0 for i = 
even or odd, because the particle state is never coupled to the tildon state 
and the norms o f  the particle and the tildon are independent o f  each other. 
The tildon is actually not a real particle but only a reflection of the discrete 
space-time. Thus, we have the indefinite metric 

for normal states 

((r162 = (-- 1)"3,,, for abnormal states (4.4) 

which are, respectively, associated with the Hermitian and anti-Hermitian 
interaction, i.e., H § = H and H + = - H .  In our case, the tildon corre- 
sponding to the abnormal states is not observable for the sake of  the relation 
(2.9), while the particle corresponds to the normal states which have a 
positive definite metric. 

4.2. S Matrix. Now, defining the S matrix in the conventional way as 

II > = Sil > (4.5) 

where limb) and limb) are the initial and final states, respectively, we find that 

(4.6) 

In order to have the norm, 

< ll ll > = < 11 I1 > (4.7) 

one should have the relation 

S + ,7S  = ~ (4.8) 

This is the condition that we should have in the present theory instead of 
the unitary condition in the usual theory. Let us call it the "pseudounitary 
condition" hereafter. With the conventional expression of  the S matrix, 

i H ( t )  art - 1 S = 1 - -~ ~ -~ | dtl d t2H(q)H( t2)  + . . .  (4.9) 
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the pseudounitary condition can also be obtained as 

i d t [ H + ( t ) ~  - ~/-/(t)] 

f 1 dt~ d t 2 { H + ( t ~ ) [ H §  - ~H(t2)] 
2 h  2 oo oo 

- [H+(tl)rl - ~ l H ( t l ) ] H ( t 2 ) }  + o . .  
=r /  

where we used the relation (4.1). Thus, the following is clarified. If  the inter- 
action is pseudo-Hermitian, the S matrix is pseudounitary and the norm is 
given by (4.7). On the other hand, if  the norm is given as (4.7) or (4.4) with 
the indefinite metric 7, the S matrix is pseudounitary and the interaction is 
not Hermitian but pseudo-Hermitian. If  the states are not associated with 
the tildon field but with the particle field, i.e., normal states, (4.7) is auto- 
matically reduced to the usual unitary condition. The reason why the in- 
definite metric has not been accepted so far is that the negative probability 
appeared in the physical processes and accordingly the pseudounitary 
condition was unsatisfactory in the usual theory. However, if only the negative 
probability is well handled, the indefinite metric may save the theory. In 
our theory, the tildon is allowed to appear only in virtual states by the mass 
relation (2.9) and, therefore, pseudounitarity is necessary and sufficient as 
a condition imposed on the S matrix. 

It can be seen from equations (3.1) and (3.6) that the tildon is always 
associated with the particle and it cannot exist alone because it is just a 
reflection of the discrete space-time and makes a significant role only when 
the particle is put in the space-time. Therefore, the number of the particle 
cannot be smaller than that of the tildon in any processes. 

4.3. Probability. In the frame of our present theory, the probability is 
expressed as 

while it is given by I(~n[lr 2 in the usual theory. Of course, for the normal 
state, (4.10) is reduced to the usual expression. For the abnormal state, we 
find that 

e .  = = ( - 1 ) " [ ( ( r 1 6 2  (4 .11 )  

which is negative when n is odd. This means that we have negative probability 
for the state in which an odd number of tildons exists. This fact is no longer 
a problem in our case because the tildon can exist only in the virtual state 
for the sake of the mass relation (2.9). Though the probability is positive 
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for even number of  the tildon, they are also confined in the virtual state by 
the mass relation. 

Let us set up an axiom as follows: the probability is expressed by 
negative values for the state where an odd number of  the tildons exists and 
by positive values for the state where an even number of the tildons exists. 

With this axiom, we do not have any difficulty in our present theory. 
Introducing a quantity , (where ,~ = 1), which is given as ,+ = ,  and 
,+ = - ,  associated, respectively, with the Hermitian and anti-Hermitian 
interactions, H § = H and H § = - H, we give the probability density 

I , " 4 1 . - .  r ~ = ( ,+ )" t , ) "1 r  r ~ 

= f(-1)%2"]41 "" .4,12 = ( - 1 ) " 1 r 1 6 2  ~ f o r ,  + = - ,  

1,'2"141 " ' '4 .12  = ]41 .4,1 z f o r , +  = , 

The quant i ty ,  is interpreted as a representation of the particle and the tildon. 
Now summing the probability (4.10) over n, we obtain the probability 

in the whole space 

P .  = ~ (~114.)'q(4,~][~) (4.12) 

= ~ <4118 § 114.>,~<4.1[sI1~> (4.13) 

I f  we have a relation 

we find 

by (4.12) and 

1[4.>~<4.11 = ~ (4.14) 

P .  = <4117114> (4.15) 

P .  : (41Is +~s  [14> = <411~114> (4.16) 

by (4.13) and (4.8). These results are consistent with (4.7). Accordingly, it 
can be said that when the norm is given by (4.7), the relation (4.14) holds. 
For  the normal states, the relation (4.14) reduces to the usual closure relation, 
i.e., ~ ,  ]4,)<4,] = 1. It can also be rewritten 

~[1r162 = 1 (4.14') 

4.4. Matrix Element. In calculation of the matrix elements, the first- 
order term is obtained by making use of  (4.2), (4.3), (4.4), and (4.14') as 

(r162 = ~ <r162162162 

= Y R,~r,<C, II,TH[[r = ~ R,%,H, = n r ,  (4.17) 
l 1 
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The numerator of  the second-order term (i.e., apart from the energy de- 
nominator) is calculated as follows: 

which can be written by help of  the relation (4.1) 

~H = H~ for H + = H (normal) 

~TH = - H~ for H + = - H (abnormal) 

as 

< ,IIHHII ,> -- l- <4/InHl4,>><<r = H, zHu 

for H + = - H  

(4.18) 

Accordingly, for the case in which the tildon appears in the intermediate 
states the matrix element has a negative sign, i.e., the tildon propagator 
has a negative sign while the particle propagator has a positive sign. As 
has been seen herein, the negative sign of the tildon propagator is due to 
the indefinite metric. The fact mentioned above can be expressed as follows: 
the negative sign of  the tildon propagator indicates that the tildons are 
coupled to the charges by a factor - e  2, so that the interaction Lagrangian 
would have the coupling constant, which implies that H is not Hermitian. 

A discussion on the indefinite metric was also given by Lee and Wick 
(1969) from a different point of  view. 

5. CONCLUDING REMARKS 

Under the hypothesis that a fundamental length exists of  this nature, 
the basic equations of motion which are Lorentz invariant have been derived. 
Assuming that the particle mass is a function of  lo, we have found the very 
important mass relation which is the condition for confirment of  the tildon 
field with indefinite metric in the virtual state. This mass relation indicates 
that the particle mass larger than (h/2loc) cannot exist. It can be implicated 
to the concept of  compensation as follows: The constants c and h appearing 
in the special theory of  relativity and quantum theory represent the departure 
of  these theories from classical physics. The constant c compensates for 
loss of the invariance of distance and time interval, while the constant h 
compensates for the impossibility of  simultaneous measurement of  the 
position and momentum of  a particle with arbitrary precision. The constant 
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c also imposes an upper limit upon the velocity of  the particle. The third 
universal constant lo introduced in our theory compensates for loss of  the 
rest mass of  the elementary particle larger than (h/2loc) and it imposes a 
minimum upon the measurable length. 

There is another idea for removal of  divergences. Namely, a form factor 
is taken into account at vertexes (Ringhofer and Salecker, 1975; Rich and 
Wesley, 1972). The propagator of  the photon in our theory can be written as 

1 1 1 [ k 2 )] 1 F(k2 ,lo2) 
k~ k~. _ 0/1o2) = ~ 1 k~ ' _;-O/lo 2 - -~ 

where F(k 2, lo 2) takes the place of the form factor and it becomes a pole 
type 

(1 + lo2k 2) for k 2 < 1/lo 2 

The value of  the universal constant lo can be determined only by ex- 
periment. The recent experiments by the Stanford group on e+e - ---> e +e-,  
e+e - --->/z+/z - and e+e - -->FY confirmed that the QED is valid up to 
4 x 10 -15 cm (Hofstadter, 1975). With these data, we can find lo < 4 x 
10 -15 cm. Since the very accurate measurement of  the anomalous magnetic 
moments for the electron and the muon are now available (Rich and Wesley, 
1972; Walls and Stein, 1973; Bailey et al., 1975), we can also estimate lo 
with these data. When the vertex correction is calculated by using our 
propagators, we obtain an additional term to the Schwinger term of  the 
magnetic moment. Comparing the theoretical value with the recent data 
(Rich and Wesley, 1972; Bailey et al., 1975), we obtain lo - 10 -16 cm for 
a photon and lo - 10 -2o cm for a fermion. A detailed discussion will be 
given in a separate paper. Kirzhnits and Chechin (1968) investigated the 
radiation from a charged particle on the basis of quantized space-time, and 
by comparing the theoretical width with that manifested in the MSssbauer 
effect they estimated an upper limit of  the fundamental length, lo - 10 -2~ cm. 
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APPENDIX 

When a particle (say, a proton, its mass mp) is put in a certain field, 
the particle will fluctuate owing to the field fluctuation, and, thus, it cannot 
be localized in a sphere whose radius is smaller than a certain value of  R. 
Although the position of the free particle is quantum-mechanically un- 
certain by Ax > (h/mpc), we shall here estimate the uncertainty of  the 
particle position due to the field fluctuation. 



Fundamental Length and Quantum Electrodynamics 627 

Let us consider the Lagrangian with a nonrelativistic potential q~, 

rnpv 2 
L = - m p c  2 + - - f - -  - 4 (A.1) 

where v is the velocity of the particle with the mass rnp. The action is given 
by 

S = - m p c  j ds 

f m4) = L dt = - m p c  c - ~-~ + dt (A.2) 

and then, the world-line is 

Its square yields 

1 4 
ds = c dt ~ v. dr + rn~c dt (A.3) 

24, ) (d t )2  _ (dr)2 (A.4) (ds)  2 = c 2 1 + 

where the terms of order (v/c) 2 are neglected. Here, we have a condition, 

g00 = 1 + 2__~._4 /> 0 (A.5) 
m p c  2 

When the proton energy due to the fluctuation is expressed as the mass 
increase, the position of the proton is uncertain by 

hc h 
hx(~-2R) = c a t  >>. A---E = Ampc  (A.6) 

The gravitational potential due to the fluctuation between two protons at 
r ~> R is, then, given by 

4(r) = _ G ( m p  + Am~) 2 + Gm~ 2 _" 2Gm~Amp (A.7) 
r r r 

Combining (A.5), (A.6), and (A.7), we obtain at r = R, 

0 ~< goo = 1 + 26(R) 1 4GAmp 2Gh 
mpc2 ~ R c  2 <~ 1 - R2c----- X (A.8) 

Thus, we find 
R >~ (2Gh/c3) 112 (A.9) 

By the discussion given above, it has turned out that the particle in the 
gravitational field cannot be localized in the sphere of radius less than 
(2Gh/c3)l /L The discussion was initially given by Mead (1964). 
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TABLE 1. The values of R0 = (2F)lt2(h/mpc) 

F R0 (cm) 

Gravitation Gmp2/hc = 0.6 x 10 -as 2.3 x 10 -aS 
Weak int. ~ ~w~/4"n'hc = (gJ/4"n'hc)(m~,c/h) 2 4.7 x 10 -is  

= 0.25 x 10 -7 
E.M. int. e2]hc = 1[137 2.5 x 10 -15 
Strong int. gZ/4"n'hc = 1 3.0 x 10 -14 

a For the decay/~- ~ e- + v + v, 
#,~" 1 (gwz]2{mrc] �9 

4",r(hc) 2 = 4"~ ~-~c / \ - h - /  
gw z = 0.27 • 10 -~4 cm 3 MeV. 

= 0.76 x 19 -14 

Since the electric field is - e2/r, replacing G by e2/mp z in  (A.9) we obta in  
the localizability radius in  the electric field 

R >>. (2a)l/2(h/m,c) (A.IO) 

where = = (e2[hc) is the fine-structure constant .  

The field associated with a scalar boson  exchange is expressed by the 
Yukawa-type potent ia l  

g2 e-ucrla g2 
~ _ - - -  (A.11) 

4~r r ,=R 4rrR 

Replacing G by g2/4,rrrnp2, we find 

j \~cpc! (A.12) 

Thus,  the general form of  the localizability condi t ions  for the p ro ton  is 

R >>. ( 2 F ) I ' 2 ( + )  (A.13) 

where F is the coupling constant .  The region where a particle can be localized 
in  the field depends on the strength of  the coupling field, and  a particle 

with a mass m canno t  be b o u n d  in  the sphere whose radius is less than  
(2F) 1/2 x (h/mc). Table  1 shows the m i n i m u m  radius of  localization for 

various coupling constants.  I t  is consistent that  the localizability becomes 
better  as the coupl ing constant  becomes weaker. 
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